您当前的位置:成果库 > 基于改进词袋模型的不良图像检测方法
基本信息
- 成果类型 高等院校
- 委托机构 西安电子科技大学
- 成果持有方 西安电子科技大学
- 行业领域 通讯领域
- 项目名称 基于改进词袋模型的不良图像检测方法
- 知识产权 发明专利
- 项目简介 本发明公开了一种基于改进词袋模型的不良图像检测方法,主要解决传统词袋模型在检测不良图像过程中颜色描述不准确、关键特征点提取不全面、特征描述复杂、局部区域描述不精确的问题。其实现步骤为:(1)提取关键特征点;(2)对关键特征点提取颜色特征和梯度特征;(3)根据颜色特征和梯度特征分别建立颜色词典和梯度词典;(4)根据先验知识计算每个特征点颜色单词的类条件概率;(5)根据类条件概率对相应的梯度单词加权,并统计加权后的梯度单词直方图,(6)利用直方图训练分类器;(7)用训练好的分类器检测不良图像。本发明提高了颜色描述信息的丰富性,避免了关键特征点的丢失,能更加精确描述图像局部区域,可用于过滤色情图像。
交易信息
- 意向交易额 面议
- 挂牌时间 2018/04/17
- 委托机构 西安电子科技大学
- 联系人姓名 王小刚
- 联系人电话 15802954800
- 联系人邮箱 745490733@qq.com
- 分享至: